1. Pengertian Pneumatik
Istilah pneumatik berasal dari bahasa Yunani, yaitu ‘pneuma’ yang berarti napas atau udara. Istilah pneumatik selalu berhubungan dengan teknik penggunaan udara bertekanan, baik tekanan di atas 1 atmosfer maupun tekanan di bawah 1 atmosfer (vacum). Sehingga pneumatik merupakan ilmu yang mempelajari teknik pemakaian udara bertekanan (udara kempa). Jaman dahulu kebanyakan orang sering menggunakan udara bertekanan untuk berbagai keperluan yang masih terbatas, antara lain menambah tekanan udara ban mobil/motor, melepaskan ban mobil dari peleknya, membersihkan kotoran, dan sejenisnya. Sekarang, sistem pneumatic memiliki apliaksi yang luas karena udara pneumatik bersih dan mudah didapat. Banyak industri yang menggunakan sistem pneumatik dalam proses produksi seperti industry makanan, industri obat-obatan, industri pengepakan barang maupun industri yang lain. Belajar pneumatik sangat bermanfaat mengingat hampir semua industri sekarang memanfaatkan sistem pneumatik.
2. Karakteristik Udara Kempa
Udara dipermukaan bumi ini terdiri atas campuran dari bermacam-macam gas. Komposisi dari macam-macam gas tersebut adalah sebagai berikut : 78 % vol. gas 21 % vol. nitrogen, dan 1 % gas lainnya seperti carbon dioksida, argon, helium, krypton, neon dan xenon. Dalam sistem pneumatik udara difungsikan sebagai media transfer dan sebagai penyimpan tenaga (daya) yaitu dengan cara dikempa atau dimampatkan. Udara termasuk golongan zat fluida karena sifatnya yang selalu mengalir dan bersifat compressible (dapat dikempa). Sifat-sifat udara senantiasa mengikuti hukum-hukum gas. Karakteristik udara dapat diidentifikasikan sebagai berikut : a) Udara mengalir dari tekanan tinggi ke tekanan rendah, b) Volume udara tidak tetap. c) Udara dapat dikempa (dipadatkan), d) Berat jenis udara 1,3 kg/m³, e) Udara tidak berwarna
3. Aplikasi Penggunaan Pneumatik
Penggunaan udara bertekanan sebenarnya masih dapat dikembangkan untuk berbagai keperluan proses produksi, misalnya untuk melakukan gerakan mekanik yang selama ini dilakukan oleh tenaga manusia, seperti menggeser, mendorong, mengangkat, menekan, dan lain sebagainya. Gerakan mekanik tersebut dapat dilakukan juga oleh komponen pneumatik, seperti silinder pneumatik, motor pneumatik, robot pneumatik translasi, rotasi maupun gabungan keduanya. Perpaduan dari gerakan mekanik oleh aktuator pneumatik dapat dipadu menjadi gerakan mekanik untuk keperluan proses produksi yang terus menerus (continue), dan flexibel. Pemakaian pneumatik dibidang produksi telah mengalami kemajuan yang pesat, terutama pada proses perakitan (manufacturing), elektronika, obat-obatan, makanan, kimia dan lainnya. Pemilihan penggunaan udara bertekanan (pneumatik) sebagai sistim kontrol dalam proses otomasinya, karena pneumatik mempunyai beberapa keunggulan, antara lain: mudah diperoleh, bersih dari kotoran dan zat kimia yang merusak, mudah didistribusikan melalui saluran (selang) yang kecil, aman dari bahaya ledakan dan hubungan singkat, dapat dibebani lebih, tidak peka terhadap perubahan suhu dan sebagainya. Udara yang digunakan dalam pneumatik sangat mudah didapat/diperoleh di sekitar kita. Udara dapat diperoleh dimana saja kita berada, serta tersedia dalam jumlah banyak. Selain itu udara yang terdapat di sekitar kita cenderung bersih dari kotoran dan zat kimia yang merugikan. Udara juga dapat dibebani lebih tanpa menimbulkan bahaya yang fatal. Karena tahan terhadap perubahan suhu, maka penumatik banyak digunakan pula pada industri pengolahan logam dan sejenisnya.
Secara umum udara yang dihisap oleh kompressor, akan disimpan dalam suatu tabung penampung. Sebelum digunakan udara dari kompressor diolah agar menjadi kering, dan mengandung sedikit pelumas. Setelah melalui regulator udara dapat digunakan menggerakkan katub penggerak (aktuator), baik berupa silinder/stang torak yang bergerak translasi, maupun motor pneumatik yang bergerak rotasi. Gerakan bolak balik (translasi), dan berputar (rotasi) pada aktuator selanjutnya digunakan untuk berbagai keperluan gerakan yang selama ini dilakukan oleh manusia atau peralatan lain.
Efektifitas Pneumatik
Sistim gerak dalam pneumatik memiliki optimalisasi/efektifitas bila digunakan pada batas-batas tertentu. Adapun batas-batas ukuran yang dapat menimbulkan optimalisasi penggunaan pneumatik antara lain: diameter piston antara 6 s/d 320 mm, anjang langkah 1 s/d 2.000 mm, tenaga yang diperlukan 2 s/d 15 bar, untuk keperluan pendidikan biasanya berkisar antara 4 sampai dengan 8 bar, dapat juga bekerja pada tekanan udara di bawah 1 atmosfer (vacuum), misalnya untuk keperluan mengangkat plat baja dan sejenisnya melalui katup karet hisap flexibel. Adapun efektifitas penggunaan udara bertekanan dapat dilihat pada grafik berikut:
Diameter Torak (D)
Gambar 1. Efektifitas udara bertekanan (Werner Rohrer,1990)
Penggunaan silinder pneumatik biasanya untuk keperluan antara lain: mencekam benda kerja, menggeser benda kerja, memposisikan benda kerja, mengarahkan aliran material ke berbagai arah. Penggunaan secara nyata pada industri antara lain untuk keperluan: membungkus (verpacken), mengisi material, mengatur distribusi material, penggerak poros, membuka dan menutup pada pintu, transportasi barang, memutar benda kerja, menumpuk/menyusun material, menahan dan menekan benda kerja. Melalui gerakan rotasi pneumatik dapat digunakan untuk, mengebor, memutar mengencangkan dan mengendorkan mur/baut, memotong, membentuk profil plat, menguji, proses finishing (gerinda, pasah, dll.)
4. Keuntungan dan Kerugian Penggunaan udara Kempa
5.1 Keuntungan
Penggunaan udara kempa dalam sistim pneumatik memiliki beberapa keuntungan antara lain dapat disebutkan berikut ini :
1. Ketersediaan yang tak terbatas, udara tersedia di alam sekitar kita dalam jumlah yang tanpa batas sepanjang waktu dan tempat.
2. Mudah disalurkan, udara mudah disalurkan/pindahkan dari satu tempat ke tempat lain melalui pipa yang kecil, panjang dan berliku.
3. Fleksibilitas temperatur, udara dapat fleksibel digunakan pada berbagai temperatur yang diperlukan, melalui peralatan yang dirancang untuk keadaan tertentu, bahkan dalam kondisi yang agak ekstrem udara masih dapat bekerja.
4. Aman, udara dapat dibebani lebih dengan aman selain itu tidak mudah terbakar dan tidak terjadi hubungan singkat (kotsleiting) atau meledak sehingga proteksi terhadap kedua hal ini cukup mudah, berbeda dengan sistim elektrik yang dapat menimbulkan kostleting hingga kebakaran.
5. Bersih, udara yang ada di sekitar kita cenderung bersih tanpa zat kimia yang berbahaya dengan jumlah kandungan pelumas yang dapat diminimalkan sehingga sistem pneumatik aman digunakan untuk industri obat-obatan, makanan, dan minuman maupun tekstil
6. Pemindahan daya dan Kecepatan sangat mudah diatur. udara dapat melaju dengan kecepatan yang dapat diatur dari rendah hingga tinggi atau sebaliknya. Bila Aktuator menggunakan silinder pneumatik, maka kecepatan torak dapat mencapai 3 m/s. Bagi motor pneumatik putarannya dapat mencapai 30.000 rpm, sedangkan sistim motor turbin dapat mencapai 450.000 rpm.
7. Dapat disimpan, udara dapat disimpan melalui tabung yang diberi pengaman terhadap kelebihan tekanan udara. Selain itu dapat dipasang pembatas tekanan atau pengaman sehingga sistim menjadi aman.
8. Mudah dimanfaatkan, udara mudah dimanfaatkan baik secara langsung missal untuk membersihkan permukaan logam dan mesin-mesin, maupun tidak langsung, yaitu melalui peralatan pneumatik untuk menghasilkan gerakan tertentu.
5.2 Kerugian/Kelemahan Pneumatik
Selain memiliki kelebihan seperti di atas, pneumatik juga memiliki beberapa kelemahan antara lain:
1. Memerlukan instalasi peralatan penghasil udara. Udara kempa harus dipersiapkan secara baik hingga memenuhi syarat. memenuhi kriteria tertentu, misalnya kering, bersih, serta mengandung pelumas yang diperlukan untuk peralatan pneumatik. Oleh karena itu sistem pneumatik memerlukan instalasi peralatan yang relatif mahal, seperti kompressor, penyaring udara, tabung pelumas, pengeering, regulator, dll.
2. Mudah terjadi kebocoran, Salah satu sifat udara bertekanan adalah ingin selalu menempati ruang yang kosong dan tekanan udara susah dipertahankan dalam waktu bekerja. Oleh karena itu diperlukan seal agar udara tidak bocor. Kebocoran seal dapat menimbulkan kerugian energi. Peralatan pneumatic harus dilengkapi dengan peralatan kekedapan udara agar kebocoran pada sistim udara bertekanan dapat ditekan seminimal mungkin.
3. Menimbulkan suara bising, Pneumatik menggunakan sistim terbuka, artinya udara yang telah digunakan akan dibuang ke luar sistim, udara yang keluar cukup keras dan berisik sehingga akan menimbulkan suara bising terutama pada saluran buang. Cara mengatasinya adalah dengan memasang peredam suara pada setiap saluran buangnya.
4. Mudah Mengembun, Udara yang bertekanan mudah mengembun, sehingga sebelum memasuki sistem harus diolah terlebih dahulu agar memenuhi persyaratan tertentu, misal kering, memiliki tekanan yang cukup, dan mengandung sedikit pelumas agar mengurangi gesekan pada katup-katup dan aktuator. Diharapkan setelah diketahuinya keuntungan dan kerugian penggunaan udara kempa ini kita dapat membuat antisipasi agar kerugian-kerugian ini dapat dihindari.
5. Klasifikasi Sistim Pneumatik
Sistim elemen pada pneumatik memiliki bagian-bagian yang mempunyai fungsi berbeda. Secara garis besar sistim elemen pada pneumatik dapat digambarkan pada skema berikut :
Gambar 2. Klasifikasi Elemen Sistim Pneumatik (FESTO FluidSIM)
1. Peralatan Sistem Pneumatik
7.1 Kompressor (Pembangkit Udara Kempa)
Kompresor berfungsi untuk membangkitkan/menghasilkan udara bertekanan dengan cara menghisap dan memampatkan udara tersebut kemudian disimpan di dalam tangki udara kempa untuk disuplai kepada pemakai (sistem pneumatik). Kompressor dilengkapi dengan tabung untuk menyimpan udara bertekanan, sehingga udara dapat mencapai jumlah dan tekanan yang diperlukan. Tabung udara bertekanan pada kompressor dilengkapi dengan katup pengaman, bila tekanan udaranya melebihi ketentuan, maka katup pengaman akan terbuka secara otomatis. Pemilihan jenis kompresor yang digunakan tergantung dari syarat-syarat pemakaian yang harus dipenuhi misalnya dengan tekanan kerja dan volume udara yang akan diperlukan dalam sistim peralatan (katup dan silinder pneumatik). Secara garis besar kompressor dapat diklasifikasikan seperti di bawah ini.
1.1.1 Klasifikasi Kompressor
Secara garis besar kompressor dapat diklasifikasikan menjadi dua bagian, yaitu Positive Displacement kompressor, dan Dynamic kompressor, (Turbo), Positive Displacement kompressor, terdiri dari Reciprocating dan Rotary, sedangkan Dynamic kompressor, (turbo) terdiri dari Centrifugal, axial dan ejector, secara lengkap dapat dilihat dari klasifikasi di bawah ini:
1.1.1.1 Kompresor Torak Resiprokal (reciprocating kompressor)
Kompresor ini dikenal juga dengan kompresor torak, karena dilengkapi dengan torak yang bekerja bolak-balik atau gerak resiprokal. Pemasukan udara diatur oleh katup masuk dan dihisap oleh torak yang gerakannya menjauhi katup. Pada saat terjadi pengisapan, tekanan udara di dalam silinder mengecil, sehingga udara luar akan masuk ke dalam silinder secara alami. Pada saat gerak kompressi torak bergerak ke titik mati bawah ke titik mati atas, sehingga udara di atas torak bertekanan tinggi, selanjutnya di masukkan ke dalam tabung penyimpan udara. Tabung penyimpanan dilengkapi dengan katup satu arah, sehingga udara yang ada dalam tangki tidak akan kembali ke silinder. Proses tersebut berlangsung terus-menerus hingga diperoleh tekanan udara yang diperlukan. Gerakan mengisap dan mengkompressi ke tabung penampung ini berlangsung secara terus menerus, pada umumnya bila tekanan dalam tabung telah melebihi kapasitas, maka katup pengaman akan terbuka, atau mesin penggerak akan mati secara otomatis.
1.1.1.1 Kompresor Torak Dua Tingkat Sistem Pendingin Udara
Kompresor udara bertingkat digunakan untuk menghasilkan tekanan udara yang lebih tinggi. Udara masuk akan dikompresi oleh torak pertama, kemudian didinginkan, selanjutnya dimasukkan dalam silinder kedua untuk dikompresi oleh torak kedua sampai pada tekanan yang diinginkan. Pemampatan (pengompresian) udara tahap kedua lebih besar, temperatur udara akan naik selama terjadi kompresi,
sehingga perlu mengalami proses pendinginan dengan memasang sistem pendingin. Metode pendinginan yang sering digunakan misalnya dengan sistem udara atau dengan sistem air bersirkulasi.
Gambar 5. Kompresor Torak dua Tingkat Sistem Pendinginan Udara
Batas tekanan maksimum untuk jenis kompresor torak resiprokal antara lain, untuk kompressor satu tingkat tekanan hingga 4 bar, sedangkan dua tingkat atau lebih tekanannya hingga 15 bar.
1.1.1.1 Kompresor Diafragma (diaphragma compressor)
Jenis Kompresor ini termasuk dalam kelompok kompresor torak. Namun letak torak dipisahkan melalui sebuah membran diafragma. Udara yang masuk dan keluar tidak langsung berhubungan dengan bagian-bagian yang bergerak secara resiprokal. Adanya pemisahan ruangan ini udara akan lebih terjaga dan bebas dari uap air dan pelumas/oli. Oleh karena itu kompressor diafragma banyak digunakan pada industry bahan makanan, farmasi, obat-obatan dan kimia. Prinsip kerjanya hampir sama dengan kompresor torak. perbedaannya terdapat pada sistem kompresi udara yang akan masuk ke dalam tangki penyimpanan udara bertekanan. Torak pada kompresor diafragma tidak secara langsung menghisap dan menekan udara, tetapi menggerakkan sebuah membran (diafragma) dulu. Dari gerakan diafragma yang kembang kempis itulah yang akan menghisap dan menekan udara ke tabung penyimpan..
Gambar 6. Kompresor Diafragma
1.1.1.1 Konpresor Putar (Rotary Compressor)
1.1.1.1.1 Kompressor Rotari Baling-baling Luncur
Secara eksentrik rotor dipasang berputar dalam rumah yang berbentuk silindris, mempunyai lubang-lubang masuk dan keluar. Keuntungan dari kompressor jenis ini adalah mempunyai bentuk yang pendek dan kecil, sehingga menghemat ruangan. Bahkan suaranya tidak berisik dan halus dalam , dapat menghantarkan dan menghasilkan udara secara terus menerus dengan mantap. Baling-baling luncur dimasukkan ke dalam lubang yang tergabung dalam rotor dan ruangan dengan bentuk dinding silindris. Ketika rotor mulai berputar, energi gaya sentrifugal baling-balingnya akan melawan dinding. Karena bentuk dari rumah baling-baling itu sendiri yang tidak sepusat dengan rotornya maka ukuran ruangan dapat diperbesar atau diperkecil menurut arah masuknya (mengalirnya) udara.
Gambar 7. Kompresor Rotari Baling-baling Luncur (FESTO Transparan)
1.1.1.1 Kompresor Sekrup (Screw)
Kompressor Sekrup memiliki dua rotor yang saling berpasangan atau bertautan (engage), yang satu mempunyai bentuk cekung, sedangkan lainnya berbentuk cembung, sehingga dapat memindahkan udara secara aksial ke sisi lainnya. Kedua rotor itu identik dengan sepasang roda gigi helix yang saling bertautan. Jika roda-roda gigi tersebut berbentuk lurus, maka kompressor ini dapat digunakan sebagai pompa hidrolik pada pesawat-pesawat hidrolik. Roda-roda gigi kompressor sekrup harus diletakkan pada rumah-rumah roda gigi dengan benar sehingga betul-betul dapat menghisap dan menekan fluida.
Gambar 8. Kompresor Sekrup (Gottfried Nist, 1994)
1.1.1.1 Kompressor Root Blower (Sayap Kupu-kupu)
Gambar 9. Kompressor Model Root Blower
1.1.1.1 Kompresor Aliran (turbo kompressor)
Jenis kompresor ini cocok untuk menghasilkan volume udara yang besar. Kompresor aliran udara ada yang dibuat dengan arah masuknya udara secara aksial dan ada yang secara radial. Arah aliran udara dapat dirubah dalam satu roda turbin atau lebih untuk menghasilkan kecepatan aliran udara yang diperlukan. Energi kinetic yang ditimbulkan menjadi energi bentuk tekanan.
1.1.1.2 Kompressor Aliran Radial
Percepatan yang ditimbulkan oleh kompressor aliran radial berasal dari ruangan ke ruangan berikutnya secara radial. Pada lubang masuk pertama udara dilemparkan keluar menjauhi sumbu. Bila kompressornya bertingkat, maka dari tingkatpertama udara akan dipantulkan kembali mendekati sumbu. Dari tingkat pertama masuk lagi ke tingkat berikutnya, sampai beberapa tingkat sesuai yang dibutuhkan. Semakin banyak tingkat dari susunan sudu-sudu tersebut maka akan semakin tinggi tekanan udara yang dihasilkan. Prinsip kerja kompressor radial akan mengisap udara luar melalui sudu-sudu rotor, udara akan terisap masuk ke dalam ruangan isap lalu dikompressi dan akan ditampung pada tangki penyimpanan udara bertekanan hingga tekanannya sesuai dengan kebutuhan.
Gambar 10. Kompresor Aliran Radial (Gottfried Nist, 1994)
1.1.1.1 Kompresor Aliran Aksial
1.1.1 Penggerak Kompresor
Penggerak kompressor berfungsi untuk memutar kompressor, sehingga kompressor dapat bekerja secara optiomal. Penggerak kompressor yang sering digunakan biasanya berupa motor listrik dan motor bakar seperti gambar 12. Kompressor berdaya rendah menggunakan motor listrik dua phase atau motor bensin. sedangkan kompressor berdaya besar memerlukan motor listrik 3 phase atau mesin diesel. Penggunaan mesin bensin atau diesel biasanya digunakan bilamana lokasi disekitarnya tidak terdapat aliran listrik atau cenderung non stasioner. Kompresor yang digunakan di pabrik-pabrik kebanyakan digerakkan oleh motor listrik karena biasanya terdapat instalasi listrik dan cenderung stasionar (tidak berpindah-pindah).
Gambar 12. Kompressor Torak berpindah (Moveble)
1.1 Unit Pengolahan Udara Bertekanan (Air Service Unit)
Udara bertekanan (kempa) yang akan masuk dalam sistem pneumatik harus harus diolah terlebih dahulu agar memenuhi persyaratan, antara lain; a) tidak mengandung banyak debu yang dapat merusak keausan komponen-komponen dalam sistem pneumatik, b) mengandung kadar air rendah, kadar air yang tinggi dapat merimbulkan korosi dan kemacetan pada peralatan pneumatik, c) mengandung pelumas, pelumas sangat diperlukan untuk mengurangi gesekan antar komponen yang bergerak seperti pada katup-katup dan aktuator. Secara lengkap suplai udara bertekanan memiliki urutan sebagai berikut: Filter udara, sebelum udara atmosfer dihisap kompresor, terlebih dahulu disaring agar tidak ada partikel debu yang merusak kompresor. Kompresor digerakkan oleh motor listrik atau mesin bensin/diesel tergantung kebutuhan. Tabung penampung udara bertekanan akan menyimpan udara dari kompresor, selanjutnya melalui katup saru arah udara dimasukan ke FR/L unit, yang terdiri dari Filter, Regulator dan Lubrication/pelumasan agar lebih memenuhi syarat. Setelah memenuhi syarat kemudian baru ke sistim rangkaian pneumatik, seperti tertera dalam bagan di bawah ini:
1.1.1 Peralatan Pengolahan Udara Bertekanan
Pengolahan udara bertekanan agar memenuhi persyaratan diperlukan peralatan yang memadai, antara lain :
• Filter Udara (air filter), berfungsi sebagai alat penyaring udara yang diambil dari udara luar yang masih banyak mengandung kotoran. Filter berfungsi untuk memisahkan partikel-partikel yang terbawa seperti debu, oli residu, dsb.
Gambar 14. Filter Udara
• Tangki udara , Berfungsi untuk menyimpan udara bertekanan hingga pada tekanan tertentu hingga pengisian akan berhenti, kemudian dapat digunakan sewaktu-waktu diperlukan
Gambar 15. Tangki Udara
• Pengering udara (air dryer)
Gambar 16. Pengering Udara
• Kompresor
berfungsi untuk menghisap udara atmosfir kemudian dimampatkan ke tabung penyimpan hingga tekanan tertentu. Sebelum digunakan harus ada sistim pengolahan udara bertekanan untuk membersihkan dan mengeringkan sebelum digunakan.
Gambar 17. Kompressor Torak
• Pemisah air
udara bertekanan yang keluar melalui filter masih mengandung uap air. Kelembaban dalam udara bertekanan dapat menyebabkan korosi pada semua saluran, sambungan, katup, alat-alat yang tidak dilindungi sehingga harus dikeringkan dengan cara memisahkan air melalui tabung pemisah air.
Gambar 18. Pemisah Air
• Tabung pelumas
Komponen sistim pneumatik memerlukan pelumasan (lubrication) agar tidakcepat aus, serta dapat mengurangi panas yang timbul akibat gesekan. Oleh karena itu udara bertekanan/mampat harus mengandung kabut pelumas yang diperoleh dari tabung pelumas pada regulator
Gambar 19. Tabung Pelumas
• Regulator udara bertekanan
Udara yang telah memenuhi persyaratan, selanjutnya akan disalurkan sesuai dengan kebutuhan. Untuk mengatur besar kecilnya udara yang masuk, diperlukan keran udara yang terdapat pada regulator, sehingga udara yang disuplai sesuai dengan kebutuhan kerjanya. Adapun unit pengolahan udara dapat dilihat pada gambar di bawah ini:
Gambar 20. Tabung Pelumas (Lumbricator)
Unit pengolahan udara bertekanan memiliki jaringan instalasi perpipaan yang sudah dirancang agar air dapat terpisah dari udara. Air memiliki masa jenis (Rho) yang lebih tinggi sehingga cenderung berada di bagian bawah. Untuk menjebaknya maka intalasi pipa diberi kemiringan, air akan mengalir secara alami ke tabung penampung air, selanjutnya dibuang. Sedangkan udara kering diambil dari bagian atas instalasai agar memiliki kadar air yang rendah. Secara lengkap unit pengolahan udara bertekanan dapat dilihat dalam skema berikut :
Gambar 21. Unit Pengolahan Udara Bertekanan (Gottfried Nist, 1994)
1.1 Pemeriksaan Udara Kempa dan Peralatan
Sebelum mengaktifkan sistem pneumatik, udara kempa dan peralatannya perlu diperiksa terlebih dahulu. Prosedur pemantauan penggunaan udara kempa yang perlu diperhatikan antara lain sebagai berikut: a) Frekuensi pemantauan, misalnya setiap akan memulai bekerja perlu memantau kebersihan udara, kandungan air embun, kandungan oli pelumas dan sebagainya. b) Tekanan udara perlu dipantau apakah sesuai dengan ketentuan. c) Pengeluaran udara buang apakah tidak berisik/bising, d) Udara buang perlu dipantau pencampuranya, e) Katup pengaman/regulator tekanan udara perlu dipantau apakah bekerja dengan baik, g) Setiap sambungan (konektor) perlu dipantau agar dipastikan cukup kuat dan rapat karena udara kempa cukup berbahaya.
Peralatan sistim pneumatik seperti valve, silinder dan lain-lain umumnya dirancang untuk tekanan antara 8 -10 bar. Pengalaman praktik menunjukkan bahwa tekanan kerja pada umumnya sekitar 6 bar. Kehilangan tekanan dalam perjalanan udara kempa karena bengkokan (bending), bocoran restriction dan gesekan pada pipa dapat menimbulkan kerugian tekanan yang diperkirakan antara 0,1 s.d 0,5 bar. Dengan demikian kompressor harus membangkitkan tekanan 6,5 - 7 bar. Apabila suplai udara kempa tidak sesuai dengan syarat-syarat tersebut di atas maka berakibat kerusakan seperti berikut : a) Terjadi cepat aus pada seal (perapat) dan bagian-bagian yang bergerak di dalam silinder atau valve (katup-katup), b) Terjadi oiled-up pada valve, d) Terjadi pencemaran (kontaminasi) pada silencers.
1.2 Konduktor dan Konektor
1.2.1 Konduktor (Penyaluran)
Penginstalan sirkuit pneumatik hingga menjadi satu sistem yang dapat dioperasikan diperlukan konduktor, sehingga dapat dikatakan bahwa fungsi konduktor adalah untuk menyalurkan udara kempa yang akan membawa/mentransfer tenaga ke aktuator.
Macam-macam konduktor :
a) Pipa yang terbuat dari tembaga, kuningan, baja, galvanis atau stenlees steel. Pipa ini juga disebut konduktor kaku (rigid) dan cocok untuk instalasi yang permanen.
b) Tabung (tube) yang terbuat dari tembaga, kuningan atau aluminium. Ini termasuk konduktor yang semi fleksible dan untuk instalasi yang sesekali dibongkar-pasang.
c) Selang fleksible yang biasanya terbuat dari piastik dan biasa digunakan untuk instalasi yang frekuensi bongkar-pasangnya lebih tinggi.
1.2.2 Konektor
Konektor berfungsi untuk menyambungkan atau menjepit konduktor (selang atau pipa) agar tersambung erat pada bodi komponen pneumatik. Bentuk ataupun macamnya disesuaikan dengan konduktor yang digunakan. Adapun nacam-macam konektor dapat kita lihat pda gambar berikut.
Gambar 23. Macam-Macam Konektor
1.1 Katup-Katup Pneumatik
Katup berfungsi untuk mengatur atau mengendalikan arah udara kempa yang akan bekerja menggerakan aktuator, dengan kata lain katup ini berfungsi untuk mengendalikan arah gerakan aktuator. Katup-katup pneumatik diberi nama berdasarkan pada:
a) . Jumlah lubang/saluran kerja (port),
b) . Jumlah posisi kerja,
c) . Jenis penggerak katup, dan
d) . Nama tambahan lain sesuai dengan karakteristik katup.
Berikut ini contoh-contoh penamaan katup yang pada umumnya disimbolkan sebagai
berikut :
Gambar 24. Detail Pembacaan Katup 5/2
Dari simbol katup di atas menunjukkan jumlah lubang/port bawah ada tiga (1,3,5) sedangkan di bagian output ada 2 port (2,4). Katup tersebut juga memiliki dua posisi/ruang yaitu a dan b. Penggerak katup berupa udara bertekanan dari sisi 14 dan 12. Sisi 14 artinya bila disisi tersebut terdapat tekanan udara, maka tekanan udara tersebut akan menggeser katup ke kanan sehingga udara bertekanan akan mengalir melalui port 1 ke port 4 ditulis 14. Demikian pula sisi 12 akan mengaktifkan ruang b sehingga port 1 akan terhubung dengan port 2 ditulis 12. Berdasarkan pada data-data di atas, maka katup di atas diberi nama :
KATUP 5/2 penggerak udara bertekanan
Contoh lain :
Katup ini memiliki tiga port dan dua posisi/ruang, penggerak knop dan pembalik pegas, maka katup tersebut diberi nama :
Katup-katup pneumatik memiliki banyak jenis dan fungsinya. Katup tersebut berperan sebagai pengatur/pengendali di dalam sistem pneumatik. Komponenkomponen kontrol tersebut atau biasa disebut katup-katup (Valves) menurut desain kontruksinya dapat dikelompokan sebagai berikut :
a. Katup Poppet (Poppet Valves)
· Katup Bola (Ball Seat Valves)
· Katup Piringan (Disc Seat Valves)
b. Katup Geser (Slide valves)
· Longitudinal Slide
· Plate Slide
Sedangkan menurut fungsinya katup-katup dikelompokkan sebagai berikut :
a) Katup Pengarah (Directional Control Valves)
b) Katup Satu Arah (Non Return Valves)
c) Katup Pengatur Tekanan (Pressure Control Valves)
d) Katup Pengontrol Aliran (Flow Control Valves)
e) Katup buka-tutup (Shut-off valves)
Sedangkan susunan urutannya dalam sistem pneumatik dapat kita jelaskan sebagai
berikut :
· Sinyal masukan atau input element mendapat energi langsung dari sumber tenaga (udara kempa) yang kemudian diteruskan ke pemroses sinyal.
· Sinyal pemroses atau processing element yang memproses sinyal masukan secara logic untuk diteruskan ke final control element.
· Sinyal pengendalian akhir (final control element) yang akan mengarahkan output yaitu arah gerakan aktuator (working element) dan ini merupakan hasil akhir dari sistem pneumatik.
1.1.1 Katup Pengarah (Directional Control Valves)
Katup 3/2 Way valve (WV) penggerak plunyer, pembalik pegas (3/2 DCV plunger actuated, spring centered), termasuk jenis katup piringan (disc valves) normally closed (NC).
Gambar 26. Katup 3/2 Knop Pembalik Pegas
Katup 4/2 penggerak plunyer, kembali pegas (4/2 DCV plunger actuated, spring
· centered), termasuk jenis katup piringan (disc seat valves)
Katup 4/3 manually jenis plate slide valves.
Gambar 28. Katup 4/3 Plunyer Pembalik Pegas
Katup 5/2, DCV-air port jenis longitudinal slide.
Gambar 29. Katup 5/2 Plunyer Penggerak Udara Bertekanan
1.1.1 Katup Satu Arah (Non Return Valves)
Katup ini berfungsi untuk mengatur arah aliran udara kempa hanya satu arah
saja yaitu bila udara telah melewati katup tersebut maka udara tidak dapat berbalik
arah. Sehingga katup ini juga digolongkan pada katup pengarah khusus.
Macam-macam katup searah :
1.1.1.1 Katup Satu Arah Pembalik Pegas
Katup satu arah hanya bisa mengalirkan udara hanya dari satu sisi saja. Udara dari arah kiri (lihat gambar 30) akan menekan pegas sehingga katup terbuka dan udara akan diteruskan ke kanan. Bila udara mengalir dari arah sebaliknya, maka katup akan menutup dan udara tidak bisa mengalir kearah kiri. Katup satu arah dalam system elektrik identitik dengan fungsi dioda yang hanya mengalirkan arus listrik dari satu arah saja
Macam-macam katup searah :
1.1.1.1 Katup Satu Arah Pembalik Pegas
Gambar 30. Katup satu arah dan simbolnya
1.1.1.1 Shuttle Valve
Katup ini akan mengalirkan udara bertekanan dari salah satu sisi, baik sisi kiri saja atau sisi kanan saja. Katup ini juga disebut katup “OR” (Logic OR function).
Gambar 31. Shuttle Valve
1.1.1 Katup DuaTekan
Katup ini dapat bekerja apabila mendapat tekanan dari kedua saluran masuknya, yaitu saluran X, dan saluran Y secara bersama-sama (lihat gambar 32). Bila udara yang mengalir dari satu sisi saja, maka katup akan menutup, namun bila 475 udara mengalir secara bersamaan dari kedua sisinya, maka katup akan membuka, sehingga katup ini juga disebut “AND” (Logic AND function).
Gambar 32. Katup Dua Tekan
1.1.1 Katup Buang Cepat (Quick Exhoust Valve)
Gambar 33. Katup Buang Cepat
1.1.1 Katup Pengatur Tekanan
Pressure Regulation Valve, katub ini berfungsi untuk mengatur besar-kecilnya tekanan udara kempa yang akan keluar dari service unit dan bekerja pada sistim pneumatik (tekanan kerja)
Gambar 34. Pressure Regulation Valve
1.1.1 Katup Pembatas Tekanan/Pengaman (Pressure Relief Valve)
Katup ini berfungsi untuk membatasi tekanan kerja maksimum pada sistem. Apabila terjadi tekanan lebih maka katup out-let akan terbuka dan tekanan lebih dibuang, jadi tekanan udara yang mengalir ke sistem tetap aman.
1.1.2 Sequence Valve
Prinsip kerja katup ini hampir sama dengan relief valve, hanya fungsinya berbeda yaitu untuk membuat urutan kerja dari sistem. Perhatikan gambar berikut :
Gambar 35. Squence Valve
1.1.1 Time Delay Valve (Katup Penunda)
Katup ini berfungsi untuk menunda aliran udara hingga pada waktu yang telah ditentukan. Udara akan mengalir dahulu ke tabung penyimpan, bila suda penuh baru akan mengalir ke saluran lainnya. Katup penunda ini juga dikenal pula dengan timer.
Gambar 36. Time Delay Valve
1.1.1 Katup Pengatur Aliran (Flow Control Valve)
Katup ini berfungsi untuk mengontrol/mengendalikan besar-kecilnya aliran udara kempa atau dikenal pula dengan katup cekik, karena akan mencekik aliran udara hingga akan menghambat aliran udara. Hal ini diasumsikan bahwa besarnya aliran yaitu jumlah volume udara yang mengalir akan mempengaruhi besar daya dorong udara tersebut. Macam-macam flow control: a) Fix flow control yaitu besarnya lubang laluan tetap (tidak dapat disetel), b) Adjustable flow control yaitu lubang laluan dapat disetel dengan baut penyetel., c) Adjustable flow control dengan check valve by pass. Adapun penampang dan simbol flow control valve adalah sebagai berikut:
Gambar 37. Katup Pengatur Aliran Udara
1.1.1 Shut of Valve
Katup ini berfungsi untuk membuka dan menutup aliran udara. Lihat gambar berikut :
Gambar 38. Shut of Valve
7.6 Unit Pengerak (Working Element = Aktuator)
Unit ini berfungsi untuk menghasilkan gerak atau usaha yang merupakan hasil akhir atau output dari sistim pneumatik.
Macam-macam aktuator :
a) Linear Motion Aktuator (Penggerak Lurus)
· Single Acting Cylinder (Silinder Kerja Tunggal)
· Double Acting Cylinder (Penggerak Putar)
b) Rotary Motion Actuator (Limited Rotary Aktuator)
· Air Motor (Motor Pneumatik)
· Rotary Aktuator (Limited Rotary Aktuator)
Pemilihan jenis aktuator tentu saja disesuaikan dengan fungsi, beban dan tujuan penggunaan sistim pneumatik.
7.6.1 Single Acting Cylinder
Silinder ini mendapat suplai udara hanya dari satu sisi saja. Untuk mengembalikan keposisi semula biasanya digunakan pegas. Silinder kerja tunggal hanya dapat memberikan tenaga pada satu sisi saja. Gambar berikut ini adalah gambar silinder kerja tunggal.
Gambar 39. Jenis Single Acting Cylinder (a) dan Simbolnya (b)
Silinder Pneumatik sederhana terdiri dari beberapa bagian, yaitu torak, seal, batang torak, pegas pembalik, dan silinder. Silinder sederhana akan bekerja bila mendapat udara bertekanan pada sisi kiri, selanjutnya akan kembali oleh gaya pegas yang ada di dalam silinder pneumatik. Secara detail silinder pneumatik sederhana pembalik pegas dapat dilihat pada gambar 39a.
7.6.2 Silinder Penggerak Ganda (Double Acting Cyinder)
Silinder ini mendapat suplai udara kempa dari dua sisi. Konstruksinya hamper sama dengan silinder kerja tunggal. Keuntungannya adalah bahwa silinder ini dapat memberikan tenaga kepada dua belah sisinya. Silinder kerja ganda ada yang memiliki batang torak (piston road) pada satu sisi dan ada pada kedua pula yang pada kedua sisi. Konstruksinya yang mana yang akan dipilih tentu saja harus disesuaikan dengan kebutuhan.
Gambar 40. Double Acting Cylinder dan simbolnya
Silinder pneumatik penggerak ganda akan maju atau mundur oleh karena adanya udara bertekanan yang disalurkan ke salah satu sisi dari dua saluran yang ada. Silinder pneumatik penggerak ganda terdiri dari beberapa bagian, yaitu torak, seal, batang torak, dan silinder. Sumber energi silinder pneumatik penggerak ganda dapat berupa sinyal langsung melalui katup kendali, atau melalaui katup sinyal ke katup pemroses sinyal (processor) kemudian baru ke katup kendali. Pengaturan ini tergantung pada banyak sedikitnya tuntutan yang harus dipenuhi pada gerakan aktuator yang diperlukan. Secara detail silinder pneumatik dapat dilihat seperti gambar 40.
7.6.2.1 Double Acting Cylinder With Cushioning
Cushion ini berfungsi untuk menghindari kontak yang keras pada akhir langkah. Jadi dengan sistem cushion ini kita memberikan bantalan atau pegas pada akhir langkah.
Gambar 41. Double Acting Cylinder with Cushioning
7.7 Air Motor (Motor Pneumatik)
Motor pneumatik mengubah energi pneumatik (udara kempa) menjadi gerakan putar mekanik yang kontinyu. Motor pneumatik ini telah cukup berkembang dan penggunaanya telah cukup meluas. Macam-macam motor pneumatik, antara lain: a) Piston Motor Pneumatik, b) Sliding Vane Motor , c) Gear Motor. d) Turbines (High Flow). Berikut contoh-contoh motor pneumatik.
Gambar 42. Motor Piston Radial dan Motor Axial
Gambar 43. Rotari Vane Motor
Menurut bentuk dan konstruksinya, motor pneumatik dibedakan menjadi : a) Motor torak, b) Motor baling-baling luncur, c) Motor roda gigi, d) Motor aliran. Cara kerja motor pneumatik berupa piston translasi kemudian dikonversi menjadi gerakan berputar/rotasi dimana udara bertekanan dialirkan melalui torak atau baling-baling yang terdapat pada porosnya.
Gambar 44. Jenis dan Simbol Motor Pneumatik/Rotary Actuator
Ada beberapa kelebihan penggunaan motor pneumatik, antara lain: a) Kecepatan putaran dan tenaga dapat diatur secara tak terbatas, b) Batas kecepatan cukup lebar, c) Ukuran kecil sehingga ringan, d) Ada pengaman beban lebih, e) Tidak peka terhadap debu, cairan, panas dan dingin, f) Tahan terhadap ledakan, g) Mudah dalam pemeliharaan, h) Arah putaran mudah dibolak-balik.
7.8 Jenis-jenis Katup Pneumatik
Tabel 1. Simbol dan Gambar Katup Sinyal Pneumatik
Simbol penekan katup sinyal memiliki beberapa jenis, antara lain penekan manual, roll, tuas, dan lain-lain. Sesuai dengan standar Deutsch Institut fur Normung (DIN) dan ISO 1219, terdapat beberapa jenis penggerak katup, antara lain:
Tabel 2. Jenis-jenis penggerak katup
7.8.1.1 Katup 3/2 dengan Penekan Roll
Katup ini sering digunakan sebagai saklar pembatas yang dilengkapi dengan roll sebagai tombol. Katup ini bekerja bila tombol roll pada katup tertekan secara manual melalui nok yang terdapat pada silinder Pneumatik atau karena adanya sistim mekanik lainnya. Saat posisi katup pneumatik belum tertekan yaitu saat katup tidak dioperasikan, saluran 2 berhubungan dengan 3, dan lubang 1 tertutup sehinggga tidak terjadi kerja apa-apa. Katup akan bekerja dan memberikan reaksi apabila ujung batang piston (batang penekan) sudah mendekat dan menyentuh pada roller-nya. Saat rooler tertekan maka terlihat bahwa lubang 1 berhubungan dengan saluran 2, sedangkan saluran 3 menjadi tertutup. Hal ini akan berakibat bahwa udara bertekanan dari lubang 1 akan diteruskan ke saluran 2. Aplikasinya nanti adalah saluran 2 itu akan dihubungkan pada katup pemroses sinyal berikutnya. Saluran 2 akan berfungsi sebagai pemberi sinyal pada katup berikutnya.
Gambar 45. Katup Sinyal Roll 3/2
Katup sinyal roll ini akan bekerja apabila ujung roller tertekan oleh nok actuator atau lainnya. Katup semacam ini dapat berfungsi sebagai pembatas gerakan atau pencegah gerakan yang berlebihan. Katup pneumatik pada dasarnya identik dengan saklar pada rangkaian listrik, maka katup tersebut juga disebut saklar pembatas.
7.8.2 Katup Pemroses Sinyal (Prossesor)
Output yang dihasilkan oleh katup sinyal akan diproses melalui katup pemroses sinyal (prosesor). Sebagai pengolah input/masukan dari katup sinyal, maka hasil pengolahan sinyal akan dikirim ke katup kendali yang akan diteruskan ke aktuator agar menghasilkan gerakan yang sesuai dengan harapan. Katup pemroses sinyal terletak antara katup sinyal dan katup pengendalian. Beberapa katup pemroses sinyal dapat pula dipasang sebelum aktuator, namun terbatas pada katup pengatur aliran/cekik yang mengatur kecepatan torak, saat maju atau mundur. Katup pemroses sinyal terdiri dari beberapa jenis, antara lain katup dua tekan (AND), katup satu tekan (OR), katup NOT, katup pengatur aliran udara (cekik) satu arah, katup pembatas tekanan, dan lainlain, seperti yang tampak dalam simbol dan gambar penampang berikut ini: 483
Tabel 3. Jenis dan Simbol Katup Pemroses Sinyal Pneumatik
Secara detail fungsi dan mekanisme kerja katup pemroses sinyal dapat dijelaskan sebagai berikut:
7.8.3. Katup Pengatur Tekanan (Pressure Control Valve)
Katup pengatur tekanan digunakan untuk mengatur tekanan udara yang akan masuk ke dalam sistim pneumatik. Katup pengatur tekanan udara akan bekerja pada batas-batas tekanan tertentu. Katup pengatur tekanan udara berfungsi mengatur tekanan agar penggerak pneumatik dapat bekerja sesuai dengan tekanan yang diharapkan. Bila telah melewati tekanan yang diperlukan maka katup ini akan membuka secara otomatis, udara akan dikeluarkan, hingga tekanan yang diperlukan tidak berlebihan. Untuk mendapatkan tekanan yang sesuai dengan keperluan dapat dilakukan dengan cara mengatur putaran pegas yang ada. Sesuai fungsinya katup pengatur tekanan dapat disimbolkan sebagai berikut :
Tabel 4. Jenis dan Simbol Katup Pembatas Tekanan
7.8.4 Katup Pengatur Aliran (Flow Control Valve)
Katup ini digunakan untuk mengatur volume aliran yang berarti mengatur kecepatan gerak piston (aktuator). Biasanya dikenal juga dengan istilah cekik. Fungsi dari pemasangan flow control valve pada rangkaian pneumatik antara lain untuk membatasi kecepatan maksimum gerakan piston/motor pneumatik, untuk membatasi daya yang bekerja, serta untuk menyeimbangkan aliran yang mengalir pada cabangcabang rangkaian pneumatik.
7.8.4.1 Katup AND (Two Pressure Valve)
Katup dua tekan akan bekerja apabila mendapat tekanan dari dua sisi secara bersama-sama. Apabila katup ini mendapat tekanan dari arah X (1,2) saja atau dari arah Y (1,4) saja maka katup tidak akan bekerja (udara tidak dapat keluar ke A). Tetapi apabila mendapat tekanan dari X (1,2) dan Y (1,4) secara bersama-sama maka katup ini akan dapat bekerja sesuai fungsinya. Secara simbolik dapat dituliskan sebagai berikut :
Tabel 5. Simbol dan Tabel Logika katup AND
7.8.4.2 Katup OR (One Pressure Valve)
Katup OR akan bekerja bila dari salah satu sisi katup terdapat udara bertekenan, baik dari sisi kiri X atau (X1) atau sisi kanan Y atau (Y2), atau keduaduanya. Dalam sistim elektrik katup OR diidentikkan dengan rangkaian parallel. Arus listrik dapat mengalir pada salah satu penghantar. Demikian pula pada pneumatik, udara bertekanan dapat dialirkan pada salah satu sisi atau kedua sisinya secara bersamaan. Katup OR dapat digambarkan dan disimpulkan sebagai berikut
Tabel 6. Simbol dan Tabel Logika katup OR
7.8.4.3 Katup NOT (Negations Valve)
Katup ini akan selalu bekerja berlawanan dengan sinyal yang masuk, bila sinyal dalam kondisi ON maka outputnya (A) akan OFF (mati), sedangkan pada posisi OFF maka outputnya akan ON. Dalam pneumatik katup NOT dapat diartikan bahwa udara bertekanan akan mengalir melalui katup NOT bila tidak diberi aksi, namun sebaliknya udara bertekanan tidak dapat diteruskan bila katup NOT diberi aksi. Katup ini biasanya dipakai untuk Emergency.
Tabel 7. Simbol dan Tabel Logika katup NOT
7.8.4.4 Katup NOR (Not OR)
Katup ini akan bekerja selalu berlawanan dengan output katup OR, bila output OR adalah ON, maka output NOR berupa OFF, demikian pula sebaliknya. Tabel Logika katup NOR dapat dijelaskan dalam tabel logika berikut:
Tabel 8. Logika katup NOR
X1
|
X2
|
A (OR)
|
A (NOR)
|
0
|
0
|
0
|
1`
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
7.8.4.5 Katup NAND (Not AND)
Katup ini akan bekerja selalu berlawanan dengan output katup AND, bila output katup AND adalah ON, maka output NAND berupa OFF, demikian pula sebaliknya. Dalam pneumatik, udara bertekanan akan diteruskan ke sistim pneumatik bila outputnya tidak AND, dan akan berhenti bila inputnya AND. Katup NAND dapat digambarkan sebagai berikut :
Tabel 9. logika katup NAND
X1
|
X2
|
A (AND)
|
A (NAND)
| |
0
|
0
|
0
|
1`
| |
0
|
1
|
0
|
1
| |
1
|
0
|
0
|
1
| |
1
|
1
|
1
|
0
|
7.8.5 Katup Pengendali Sinyal
Sinyal yang telah diolah atau diproses selanjutnya akan dikirim ke katup pengendali. Letak katup pengendali biasanya sebelum aktuator. Katup ini akan secara langsung mengendalikan aktuator baik berupa silinder pneumatik maupun motor pneumatik. Katup pengendalian biasanya memiliki dua kemungkinan, yaitu mengaktifkan aktuator maju (setzen/S) atau mengembalikan aktuator ke posisi semula/mundur (rucksetzen/R).
Katup pengendali sinyal terdiri dari beberapa jenis, antar lain, katup 5/2, 5/3, 4/2, 3/2, dan sebagainya. Salah satu contoh cara pembacaan katup pengendali adalah sebagai berikut:
Katup di atas terdiri dari 2 ruang, yaitu sisi kiri ruang a, dan sisi kanan ruang b. Setiap ruang terdiri dari 5 saluran/port, yaitu saluran 1, 2, 3, 4, dan 5. Pada sisi kiri dan kanannya terdapat kode penggerak katup tersebut misalnya penggerak udara bertekanan, penggerak mekanik, penggerak elektrik, penggerak hydrolik, dan lain-lain. Dilihat dari jenis penggerak katupnya, katup pengendali sinyal terdiri dari beberapa jenis antara lain:
7.8.5.1 Katup Kendali 5/2 penggerak udara kempa
Katup kenndali 5/2 penggerak udara kempa ini terdiri dari lima port, masingmasing diberi nomor. Pada bagian bawah (input) terdapat saluran masuk udara kempa yang diberi kode nomor 3, dan dua saluran buang yang diberi kode 3.dan 5. sedangkan bagian atas (output) terdapat dua saluran (port) yang diberi kode nomor 2 dan 4. Kedua saluran genap tersebut akan dihubungkan dengan aktuator. Selain itu terdapat dua ruang yang diberi nama ruang a dan ruang b. Kedua ruang diaktifkan/digeser oleh udara bertekanan dari sisi 14, dan sisi 12. Pada umumnya sisi 14 akan mengaktifkan ruang a sehingga port 1 terhubung dengan port 4, actuator bergerak maju. Sisi 12 untuk mengaktifkan ruangan b yang berdampak saluran 1 terhubung dengan saluran 2, sehingga aktuator bergerak mundur.
Gambar 47. Penampang dan Simbol Katup Kendali 5/2 Pengggerak Udara Kempa
7.8.5.2 Katup Kendali 5/2 penggerak udara kempa dan Mekanik
Katup kendali 5/2 penggerak udara kempa dan mekanik ini terdiri dari lima port, masing-masing diberi nomor 1, 2, 3, 4, dan 5. Pada bagian bawah (input) terdapat saluran masuk udara kempa yang diberi kode nomor 3, dan dua saluran buang yang diberi kode 3 dan 5. Bagian atas (output) terdapat dua saluran (port) yang diberi kode nomor 2 dan 4 yang akan dihubungkan dengan aktuator. Selain itu terdapat dua ruang yang diberi nama ruang a dan ruang b. Perbedaannya dengan katup di atas adalah Kedua ruang dapat diaktifkan/digeser oleh tenaga mekanik dan oleh udara bertekanan. Biasanya penggerak mekanik difungsikan untuk melakukan cheking apakah katup dapat berfungsi dengan baik atau tidak.
Gambar 48 Penampang dan Simbol Katup Kendali 5/2 Pengggerak Mekanik dan Udara Kempa
7.8.5.2 Katup Kendali 5/2 Penggerak Udara Kempa dan Pegas
Katup kendali 5/2 penggerak udara kempa dan pembalik pegas ini prinsipnya sama dengan katup kendali sebelumnya. Perbedaannya katup ini dilengkapi pegas, yang berfungsi untuk mengembalikan katup ke posisi semula secara otomatis bila udara bertekanan penggerak katup tersebut terputus. Biasanya pembalik pegas ini difungsikan untuk mempertahankan katup agar tetap ke posisi semula setelah bergeser.
Gambar 49 Penampang dan Simbol Katup Kendali 5/2 Pengggerak Mekanik Udara Kempa dan Pembalik Pegas
7.8.5.3 Katup Kendali 5/2 penggerak Magnet
Katup kendali 5/2 penggerak udara magnet ini prinsipnya sama dengan katup kendali sebelumnya. Perbedaannya katup ini dilengkapi kumparan/spull yang dililitkan ke inti besi. Bila kumparan dilalui arus, maka inti besi akan menjadi magnet. Magnet ini akan mengeser ruangan katup sesuai dengan gerakan yang diinginkan. Biasanya katup ini digunakan untuk sistem elektropneumatik atau elektro hydrolik.
Gambar 50. Simbol Katup Kendali 5/2 Pengggerak Magnet
Selain sistem penggerak katup, jenis dan simbol komponen pneumatik lainnya juga terdiri dari berbagai jenis seperti dapat dilihat pada tabel berikut:
Tabel 10. Jenis dan Simbol Komponen Sistim Pneumatik Lainnya (FESTO FluidSIM)
7.9 Model Pengikat (Types Of Mounting)
Cara-cara pengikat silinder (aktuator) pada mesin atau pesawat dapat dilaksanakan/dirancang dengan pengikat permanen atau remanen tergantung keperluan. Berikut ini gambar-gambar cara pengikatan.
Gambar 51. Tipe-Tipe Mounting
1. Sistim Kontrol Pneumatik
Komponen yang ada dalam rangkaian sistim pneumatik harus dapat bekerja sama satu dengan lainnya agar menghasilkan gerakan output aktuator yang sesuai dengan kebutuhan. Bagian ini akan mendiskripsikan tentang komponen-komponen sistim kontrol pneumatik, seperti katup sinyal, katup pemroses sinyal, dan katup kendali. Selain itu untuk memudahkan secara teoritis, akan dijelaskan pula tentang Karnaught Diagram.
1.1 Pengertian Sistim Kontrol Pneumatik
Sistim udara bertekanan tidak terlepas dari upaya mengendalikan aktuator baik berupa silinder maupun motor pneumatik, agar dapat bekerja sebagaimana yang diharapkan. Masukan (input) diperoleh dari katup sinyal, selanjutnya diproses melalui katup pemroses sinyal kemudian ke katup kendali sinyal. Bagian pemroses sinyal dan pengendali sinyal dikenal dengan bagian kontrol. Bagian kontrol akan mengatur gerakan aktuator (output) agar sesuai dengan kebutuhan. Sistim kontrol pneumatic merupakan bagian pokok sistim pengendalian yang menjadikan sistem pneumatic dapat bekerja secara otomatis. Adanya sistim kontrol pneumatik ini akan mengatur hasil kerja baik gerakan, kecepatan, urutan gerak, arah gerakan maupun kekuatannya. Dengan sistim kontrol pneumatik ini sistem pneumatic dapat didesain untuk berbagai tujuan otomasi dalam suatu mesin industri. Fungsi dari sistim kontrol pneumatik ini untuk mengatur atau mengendalikan jalannya tenaga fluida hingga menghasilkan bentuk kerja (usaha) yang berupa tenaga mekanik melalui silinder pneumatik maupun motor pneumatik. Bentuk-bentuk dari sistim kontrol pneumatik ini berupa katup (valve) yang bermacam-macam. Menurut fungsinya katup-katup tersebut dibedakan menjadi tiga kelompok yaitu: a) Katup Sinyal (sensor), b) Katup pemroses sinyal (processor), dan c) Katup pengendalian. Katupkatup tersebut akan mengendalikan gerakan aktuator agar menghasilkan sistim gerakan mekanik yang sesuai dengan kebutuhan. Katup sinyal adalah suatu alat yang menerima perintah dari luar untuk mengalirkan, menghentikan atau mengarahkan fluida yang melalui katup tersebut. Perintah tersebut berupa aksi, bisa melalui penekan, roll, tuas, baik secara mekanik maupun elektrik yang akan menimbulkan reaksi pada sistim kontrol pneumatik. Unit katup sinyal merupakan gabungan dari berbagai katup yang berfungsi memberikan input (sinyal) pada suatu unit prosesor (pemroses sinyal) agar menghasilkan gerakan
aktuator yang sesuai dengan kebutuhan. Katup sinyal akan menghasilkan sinyal/sensor sebagai masukan (input) guna diproses ke katup pemroses sinyal. Katup sinyal dilambangkan dengan katup yang terdiri dari beberapa ruangan (misal: ruang a, b, c) dan saluran udara yang dituliskan dalam bentuk angka, misal saluran 1, 2, 3, dan setersunya. Sedangkan jenis penekannya (aksi) mempunyai beberapa pilihan missal, melalui penekan manual, tuas, roll, dan sebagainya., seperti contoh berikut ini:
2. Dasar Perhitungan Pneumatik
Dasar perhitungan pneumatik merupakan bagian yang akan membahas tentang perhitungan dasar dalam pneumatik. Bagian ini akan mendeskripsikan tentang perhitungan tekanan udara (P), perhitungan debit aliran udara (Q), kecepatan torak (V), Gaya Torak (F) dan dasar perhitungan daya motor. Sebelum melaksanakan perhitungan pneumatik terlebih dahulu harus mengetahui konversi-konversi satuan yang sering dipakai dalam perhitungan dasar pneumatik. Adapun konversi satuan tersebut antara lain : a) satuan panjang, b) satuan volume, c) satuan tekanan, d) satuan massa, e) satuan energi, f) satuan gaya dan g) satuan temperatur. Selengkapnya dapat dilihat di bawah ini :
Satuan panjang
1 ft = 0.3084 m
1 inch = 2.540 cm
1 mile = 5280 ft
= 1.6093 km 1
1 km = 1000 m
1 m = 100 cm
1 cm = 0.3937 inch
= 7.4805 gal
|
Massa
1 Ib(m) = 0.45359237 kg = 7000 grain
1 kg = 1000 g
1 ton = 1000 kg
1 slug = 32.174 Ibm
= 14.5939 kg
= 444, 800 dyne
|
Tekanan
1 kPa = I000 N/m2 = 20.886 Ibf /ft2
1 atm = 760 torr = 1.01325 x 10 5 N/m 2
1 Pa = 1 N/m2
1 bar = 1.105 Pa
1 bar = 0.9869 atm
|
Temperatur/suhu
C = 5 R = 4 F = 9
oR = 4/5 x oC
oC = 5/4 x oR
oF = (9/5 x oC) + 32o
oC = 5/9 x (oF-32o)
1 °K = 1.8 °R
°K = °C + 273.15
|
Volume
1liter = 10 -3 m 3 = 1 dm3
gal = 3.7854 liter
1ft3 = 28.317 liter
1 inch3 = 16.387 cm 3
|
Gaya
1Ibf = 4.4482 N
1 N = 1 kg-m/s2
1 ton = 0.22481 Ibf
|
Energi
1 torr = 1 mm Hg
1 J = 1 kg-m2 /s 2
= 1.933 × 10 -2 psi
1 mm Hg = 0.01934 Ibf /in2 = 10 7 erg
1 erg = 1 dyne-cm
1 kalori = 4.186 J
|
1 Btu = 252.16 kal
1 in. Hg = 0.491 Ibf /in 2 = 1.05504 kJ
1 ft-lbf = 1.3558 J
1dyne/cm 2 = 10 -1 N/m 2
1 ev = 1.602 x 10 -19 J
1 W = 1 J/s
|
9.1 Tekanan Udara
A. Pe = A. P atm + W,
Dimana :
W = berat benda = m.g = ρ.V.g
= ρ.A.h. g
A = luas penampang
P atm = tekanan atmosfer
Pe = tekanan pengukuran
Dengan mengeliminasi A,
|
Gambar 52. Sistim Tekanan dalam Pneumatik
|
Udara yang mengalir ke saluran sistem pneumatik akan mengalami penurunan tekanan (head losses) akibat adanya gesekan sepanjang saluran dan belokan. Penurunan tekanan tersebut menurut Majumdar: 2001, memiliki persamaan :
1,6x103 x Q1.85
ΔP = -----------------
d5 x Pabs x pa
Dimana :
L = panjang salura (m)
D = Diameter dalam saluran (m)
Q = Debit aliran udara (m3/s)
Pabs = Tekanan absolute dalam Pa (N/m2)
Catatan : 1 bar = 105 (N/m2) = 105 Pa (Pascal)
9.2 Analisa Aliran Fluida (V)
Udara yang melewati saluran dengan luas penampang A (m2) dengan kecepatan udara mengalir V (m/dtk), maka akan memiliki debit aliran Q (m3/dtk) sebesar A (m2) x V (m/dtk).
Debit Aliran Udara (Q)
Q (m3/dtk) = A (m2) . V (m/dtk)
Bila melewati melalui saluran yang memiliki perbedaan luas penampang A, maka debit udara akan tetap, namun kecepatannya akan berubah, sebandang dengan perubahan luas penampangnya
V1 A2
Q1 = Q2 , sehingga __ = __
V2 A1
Gambar 53. Analisa Debit Udara
9.3 Kecepatan Torak (V)
Suatu silinder pneumatik memiliki torak dengan luas dan memiliki luas penampang stang torak, maka kecepatan torak saat maju akan lebih kecil dibandingkan dengan saat torak bergerak mundur.
Gambar 54. Analisis Kecepatan Torak
Vmaju = Q/A
Vmundur = Q/An
Dimana :
V = kecepatan torak (m/s)
Q = debit aliran udara (ltr/mnt)
A = luas Penampang Torak (m2)
An= A-Ak (m2)
Gambar 54. Analisis Kecepatan Torak
9.4 Gaya Torak (F)
Gambar 55. Analisis Gaya Torak
|
Fmaju = P .A.η e …(N)
Fmundur = P .A.η e ..(N)
Dimana:
F = Gaya torak (N)
Pe = Tekanan kerja/effektif (N/m2)
A = Luas Penampang (m2)
An = A-Ak (m2)
Ak = Luas batang torak (m2)
|
Gambar 56. Analisis Debit Udara
|
Q maju = A. S. n .
atm P
(Pe P ) atm +
=.....(ltr/mn)
Q mundur = A. S. n .
atm P
(Pe P ) atm +
(lt/mnt)
Dimana:
S = Langkah torak (m)
Pe = Tekanan (N/m2)
A = Luas Penampang (m2)
An = A-Ak (m2)
Ak = Luas batang torak (m2)
n = Banyaknya langkah (kali/menit)
|
Daftar pustaka :
1. Bahan ajar Pneumatik-hidrolik oleh DRS. Wirawan ,MT ,DRS. Pramono Fakultas teknik mesin UNIVERSITAS NEGRI SEMARANG